首页> 外文OA文献 >Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting
【2h】

Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting

机译:等离子体纳米粒子 - 半导体复合材料,用于高效太阳能水分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar to fuel energy conversion efficiencies are obtained with earth abundant materials. This review article discusses recent developments and discoveries in the mechanisms by which the localized surface plasmon resonance (LSPR) in metallic nanoparticles can increase or complement a neighbouring semiconductor in light absorption for catalytic water splitting applications. These mechanisms can mitigate the intrinsic optical limitations of semiconductors (e.g., metal oxides) for efficient solar water splitting. We identify four types of enhancement mechanisms in the recent literature: (i) light scattering, (ii) light concentration, (iii) hot electron injection (HEI), and (iv) plasmon-induced resonance energy transfer (PIRET). (i) Light scattering and (ii) light concentration are light trapping mechanisms that can increase the absorption of light with energies above the semiconductor optical band-edge. These two mechanisms are ideal to enhance the absorption of promising semiconductors with narrow bandgap energies that suffer from limited absorption coefficients and bulk charge recombination. On the other hand, (iii) HEI and the recently discovered (iv) PIRET are mechanisms that can enhance the absorption also below the semiconductor optical band-edge. Therefore, HEI and PIRET have the potential to extend the light utilization to visible and near-infrared wavelengths of semiconductors with excellent electrochemical properties, but with large bandgap energies. New techniques and theories that have been developed to elucidate the above mentioned plasmonic mechanisms are presented and discussed for their application in metal oxide photoelectrodes. Finally, other plasmonic and non-plasmonic effects that do not increase the device absorption, but affect the electrochemical properties of the semiconductor (e.g., charge carrier transport) are also discussed, since a complete understanding of these phenomena is fundamental for the design of an efficient plasmonic NP-semiconductor water splitting device.
机译:光电化学(PEC)水分解是一种有前途的技术,它使用吸光半导体将太阳能直接转化为化学燃料(即氢)。如果使用富含地球的材料获得高的太阳能到燃料的能源转换效率,PEC的水分解有可能成为实现可持续发展社会的关键技术。这篇综述文章讨论了金属纳米颗粒中的局部表面等离子体激元共振(LSPR)可以增加或补充相邻半导体在光吸收方面的机理的最新进展和发现,以用于催化水分解应用。这些机制可以减轻半导体(例如金属氧化物)的固有光学限制,以有效地分解太阳能。在最近的文献中,我们确定了四种类型的增强机制:(i)光散射,(ii)光聚集,(iii)热电子注入(HEI)和(iv)等离子体激元诱发的共振能量转移(PIRET)。 (i)光散射和(ii)光聚集是可以提高能量在半导体光学带边缘以上的光的吸收的光捕获机制。这两种机制对于增强具有窄带隙能量的有前途的半导体的吸收是理想的,这些窄带隙能量具有受限的吸收系数和体电荷复合。另一方面,(iii)HEI和最近发现的(iv)PIRET是在半导体光学带边缘以下也可以增强吸收的机制。因此,HEI和PIRET具有将光的利用范围扩展到具有出色的电化学性能,但带隙能量大的半导体的可见光和近红外波长的潜力。提出并讨论了阐明上述等离子体激元机理的新技术和理论,并将其应用于金属氧化物光电极中。最后,还讨论了不会增加器件吸收但会影响半导体的电化学特性(例如,电荷载流子传输)的其他等离子体和非等离子体效应,因为对这些现象的完全理解对于晶体管的设计至关重要。高效的等离子NP半导体水分解装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号